Effects of Equivalence Ratio on Species and Soot Concentrations in Premixed N-Heptane Flames

نویسندگان

  • FIKRET INAL
  • SELIM M. SENKAN
چکیده

The micro-structure of laminar premixed, atmospheric-pressure, fuel-rich flames of n-heptane/oxygen/argon has been studied at two equivalence ratios (C/O 0.63 and C/O 0.67). A heated quartz microprobe coupled to an online gas chromatography/mass spectrometry (HP 5890 Series II/HP 5972) has been used to establish the identities and absolute concentrations of stable major, minor, and trace species by the direct analysis of samples withdrawn from the flames. Benzene was the most abundant aromatic compound identified. The largest PAH detected were the family of C18H10 (molecular weight of 226) that include cyclopenta[cd]pyrene and benzo[ghi]fluoranthene, with peak concentrations reaching 8 ppm and 6 ppm, respectively. Soot particle diameters, number densities, and volume fractions were determined using classical light scattering and extinction measurements. The largest soot particle diameter measured was about 18 nm and the soot volume fraction reached the amount of 4.9 10 . © 2002 by The Combustion Institute

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of partially premixed n-heptane–air counterflow flames

To avoid the complexities associated with the droplet/vapor transport and nonuniform evaporation processes, a fundamental investigation of liquid fuel combustion in idealized configurations is very useful. An experimental–computational investigation of prevaporized n-heptane nonpremixed and partially premixed flames established in a counterflow burner is described. There is a general agreement ...

متن کامل

Effect of Unsaturated Bond on NOx and PAH Formation in n‐Heptane and 1‐Heptene Triple Flames

Various engine and shock tube studies have observed increased NOx emissions from the combustion of biodiesels relative to regular diesel and linked them to the degree of unsaturation or the number of double bonds in the molecular structure of long-chain biodiesel fuels. We report herein a numerical investigation on the structure and emission characteristics of triple flames burning n-heptane an...

متن کامل

Revisit of Diesel Reference Fuel (n-Heptane) Mechanism Applied to Multidimensional Diesel Ignition and Combustion Simulations

ABSTRACT Two reduced n-heptane mechanisms, previously developed in 1998 (40 species and 165 reactions) and in 2000 (65 species and 273 reactions) respectively, were revisited and the mechanism improvement was pursued. In the newly revised version, the mechanism consists of 83 species and 445 reactions. The mechanism was validated against the auto-ignition delay times of n-heptane/air mixture me...

متن کامل

An experimental and numerical investigation of n-heptane/air counterflow partially premixed flames and emission of NOx and PAH species

An experimental and numerical investigation of counterflow prevaporized partially premixed n-heptane flames is reported. The major objective is to provide well-resolved experimental data regarding the detailed structure and emission characteristics of these flames, including profiles of C1–C6, and aromatic species (benzene and toluene) that play an important role in soot formation. n-Heptane is...

متن کامل

Effect of Fuel Molecular Structure and Premixing on Soot Emissions from n‐Heptane and 1‐Heptene Flames

Most liquid fuels contain compounds with one or more unsaturated CC bonds. Previous studies have observed that the fuel reactivity and ignition behavior are strongly influenced by the presence and number of double bonds in the fuel molecular structure. Here, we report a numerical investigation on the effect of fuel unsaturation on PAHs and soot emissions in partially premixed flames (PPFs) bur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002